Flash память STM32

Те кто знаком с восьмибитными контроллерами типа AVR и PIC, наверняка хорошо знают о такой нужной вещи как встроенная EEPROM память. Она позволяет сохранять в нее некоторые данные и потом считывать их после выключения/включения контроллера. Энергонезависимая память одним словом. Перейдя на контроллеры STM32 я с удивлением обнаружил, что такой памяти у них просто нет! Но как потом оказалось, существует аж целых две альтернативы такой памяти. Первая — использовать backup домен. Это не совсем энергонезависимая память, чтоб информация не разрушалась после выключения основного питания, к определенному выводу контроллера должна быть подключена батарейка (вроде тех, которые стоят в материнских платах). Об этом я подробнее расскажу в следующей статье. А сейчас мы рассмотрим второй способ энергонезависимого хранения пользовательских данных — flash память контроллера.

Читать далее «Flash память STM32»

ЦАП в STM32

ЦАП (или DAC по-буржуйски)  это АЦП с точностью до наоборот — он преобразовывает некоторые цифровые данные в их аналоговое представление (читай напряжение). Говоря еще проще — ЦАП позволит нам относительно плавно изменять напряжение на ноге контроллера. Области практического применения: генерация звука, и сигналов произвольной формы. Можно прикрутить к контроллеру SD карточку и сделать wav плеер. Производительности контроллера точно хватит, ибо я делал такое даже на AVR, а у них кстати нет ни какого встроенного ЦАПа и я прикручивалвнешний. Работать с ЦАПом очень легко, и в этой статейке я попробую рассказать все, что мне известно о ЦАПе в STM32. На картинке ниже — генерация синуса при помощи ЦАПа: 

Читать далее «ЦАП в STM32»

Генерация ШИМ в STM32

В предыдущей статье про базовые таймеры, мы в очередной раз мигали светодиодами, а в этот раз пойдем гораздо дальше и попробуем вкурить как заставить контроллер STM32 генерировать ШИМ. Для этого нам придётся использовать один из таймеров общего назначения, ведь именно у них есть всё что для этого нужно. Весь остальной  функционал  этих таймеров конечно впечатляет, но в моей практике он пока не пригодился. Хотя возможно, что в будущем мне пригодятся такие полезные фичи как функция подсчёта внешних импульсов и возможность аппаратно обрабатывать повороты энкодера. Но пока займемся ШИМом. Есть вот такая схема из контроллера, трех резисторов и RGB светодиода которым мы будем управлять. Управление заключается в том, чтоб плавно зажечь и погасить каждый цвет. Разумеется можно взять три разных светодиода если нет RGB.

Читать далее «Генерация ШИМ в STM32»

Basic таймеры в STM32

Таймеры — это такая периферия контроллера STM32 позволяющая нам очень точно отсчитывать интервалы времени. Это пожалуй одна из самых важных и наиболее используемых функций, однако есть и другие. Следует начать с того, что в контроллерах STM32 существуют таймеры разной степени крутости. Самые простые это Basic timers. Они хороши тем, что очень просто настраиваются и управляются при помощи минимума регистров. Все что они умеют это отсчитывать временные интервалы и генерировать прерывания когда таймер дотикает до заданного значения. Следующая группа (general-purpose timers) гораздо круче первой, они умеют генерировать ШИМ, умеют считать испульсы поступающие на определённые ножки, можно подключать энкодер итд. И самый крутой таймер это advanced-control timer, думаю что его я использовать не буду еще очень долго так как мне пока без надобности управлять трехфазным электродвигателем. Начать знакомство с таймерами следует с чего попроще, я решил взяться за Basic таймеры. Задача которую я себе поставил: Заставить таймер генерить прерывания каждую секунду.

Читать далее «Basic таймеры в STM32»

Прерывания в STM32

В этой статье я планирую поделиться с читателями своими скромными познаниями в области прерываний. Начать следует с того, что же представляют собой прерывания. Прерывание — это событие как правило связанное с каким-либо блоком периферии микроконтроллера STM32. Событий которые могут породить прерывание может быть множество. Например если речь о таком блоке периферии как UART, то там могут быть такие события: передача завершена, приём завершен, возникла ошибка чётности итд. Использование прерываний позволит нашей программе мгновенно регировать на подобные события. Сам термин прерывание говорит о том, что что-то должно прерваться и в нашем случае прервется выполнение основного кода вашей программы и управление будет передано некоторому другому куску кода который называется обработчиком прерывания. Таких обработчиков достаточно много, ибо периферийных устройств в STM32 предостаточно. Стоит отметить важный момент: В случае возникновения двух разных прерываний от одного блока периферии возникает одно и тоже прерывание. Например если произойдет прерывание по приёму байта через UART и прерывание по завершению передачи через тот же UART, то в обоих случаях будет вызван один и тот же обработчик. Для того чтоб определить какое из возможных прерываний произошло нужно смотреть на флаги состояния. И само собой очищать их перед выходом из прерывания. Когда обработчик прерывания отработает, управление будет передано той самой строчке кода, во время выполнения которой наступило прерывание. То есть основная программа продолжит работать дальше как ни в чем не бывало.

Читать далее «Прерывания в STM32»

АЦП в STM32. Часть 2.

Насто время сделать что-то практическое с АЦП, для начала пусть это будет несложный, пример который считывает значение с какого либо канала, а потом исходя из этого значения будем менять частоту мигания тех самых многострадальных светодиодов стоящих на платке STM32VL Discovery. Для данного практического эксперимента нам потребуется сама платка дискавери и плюс переменный резистор номиналом примерно от 1К до 200К. Короче ставьте любой какой найдете, скорее всего он подойдет 🙂 Главное чтоб сопротивление было не слишком уж маленьким, а то он начнет греться, да и стабилизатор на плате может вспотеть от такой нагрузки. Соединить резистор с платой нужно так, как я показал на схеме в прерыдущей статье про регистры АЦП. Кстати, если у вас вообще нет этой платы, то просто посмотрите на ту же схему и подсоедините всю обвязку как там нарисовано. Ну а счастливым обладателям дискавери я нарисовал вот такую простую картинку: 

Читать далее «АЦП в STM32. Часть 2.»

АЦП в STM32. Часть 1

Микроконтроллер штука цифровая и обменивается с внешним миром цифоровыми сигналами: нулями и единицами. Однако иногда перед микроконтроллером встает задача произвести измерение какой либо плавно изменяющейся величины. Это может быть всё то, что принимает несколько промежуточных состояний (а не только два) например это может быть темепература, напряжение, сила тока, освещенность и так далее, примеров много. Однако, нога контроллера настроенная на вход различает только два состояния — присутствие на ноге напряжения (лог. 1) и его отсутствие (лог. 0). Для измерения  температуры это малопригодно, ведь мало кому интересен градусник имеющий только два состояния -50 и +200 градусов 🙂 Для решения проблем измерения аналоговых величин придумали АЦП – Аналого-цифровой преобразователь. Принцип работы с АЦП в двух словах: На вход АЦП поступает аналоговый сигнал и через некоторое время из АЦП можно прочитать результат преобразования, тоесть цифровое представление аналогово сигнала. Существуют микроконтроллеры STM32 со встроенным АЦП, то есть ничего подключать к контроллеру не надо, точнее почти ничего. Посмотрим на картинку: 

Читать далее «АЦП в STM32. Часть 1»

Порты микроконтроллера

Порты ввода/вывода пожалуй важнейшая часть микроконтроллера, без неё всё остальное просто бессмысленно. Сколько бы не было у контроллера памяти, периферии, какой бы высокой не была тактовая частота — это всё не имеет значения если он не может взаимодействовать с внешним миром. А взаимодействие это осуществляется через эти самые порты ввода/вывода. Далее для краткости будем называть их просто портами. Порт это некоторый именованный набор из 16-ти (как правило) ног контроллера, каждая из которых может быть индивидуально настроена и использована. Количество портов может различаться, например в контроллере установленном в отладочной плате STM32vl Discovery имеются три порта A,B,C. Существует два основных режима работы ног контроллера: вход и выход. Когда нога контроллера настроена на выход — к ней можно прицепить любой потребитель: светодиод, пищалку, да и вообще что угодно. Нужно понимать что ноги у контроллера не потянут большую нагрузку. Максимальный ток который может пропустить через себя одна нога составляет ~20 мА. Если планируется подключать что-то с более высоким энергопотреблением то нужно делать это через транзисторный ключ. В противном случае нога порта (а то и весь порт, чем черт не шутит) сгорит и перестанет выполнять свои функции. Чтобы обезопасить ногу порта можно прицепить к ней резистор номиналом примерно 220 ом. Таким образом при напряжении питания 3.3 вольта даже при коротком замыкании ноги на землю ток не превысит критического значения.  Второй режим работы ноги контроллера — это вход. Благодаря этому режиму мы можем считывать например состояние кнопок, проверяя есть ли на ноге напряжение или нет. Это вкратце, а сейчас рассмотрим подробнее как работать с портами. Рассматривать будем конечно же на практике, благо что аппаратная часть (светодиоды и кнопка) для наших экспериментов уже реализована на плате STM32vl Discovery. Если же платы нет, то можно подключить к контроллеру светодиоды и кнопку следующим образом: 

Читать далее «Порты микроконтроллера»

Необходимый софт

Так уж сложилось, что на моем компьютере всегда была установлена Windows, поэтому весь софт который мы будем использовать в ходе изучения микроконтроллеров STM32 предназначен для винды. Кстати у STM32 есть еще одно преимущество перед другими популярными контроллерами (типа pic или avr), для STM32 нет особой проблемы с софтом под линукс (об этом подробнее в другой раз).  Весь софт который нам понадобится можно поделить на три группы: 

  • Тот в котором мы пишем текст программы
  • Тот при помощи которого мы компилируем программу
  • Тот который записывает скомпилированную программу в контроллер

Это означает что у суровых челябинских металлургов есть возможность писать программы хоть в блокноте, потом делать make файлы, компилировать всё это дело и прошивать. Но мы пойдем читерским путём, заюзаем софт который будет делать всю грязную работёнку за нас, ведь на самых первых порах, получение результата гораздо важнее глубокого понимания принципов работы. Выбор IDE дело ответственное, среди трёх кандидатов (IAR, Eclipse и CooCox) я выбрал последнего по ряду причин: он бесплатный, легкий в настройке, есть поддержка ST-LINK (того который в STM32 Discovery стоит), удобный редактор кода и отладчик, интерфейс похож на эклипс который многие видели и юзали. От слов переходим к делу — скачаем, установим и настроим софт.

Читать далее «Необходимый софт»